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Abstract 

Fuzzy  Traversability Index  is introduced in this paper as a new and  simple  measure 
for quantifying  the ease of traversal of natural  terrains by  field mobile robots. This 
index  provides a simple  means for incorporating  the  terrain  quality  data into  the robot 
navigation strategy, and is  used for terrain-based navigation of field mobile robots. The 
Traversability Index  is expressed b y  fuzzy  sets  that  quantify  the  suitability of the terrain 
for traversal based on  its geometrical and physical  properties,  such  as slope, roughness, 
and hardness. This descriptive  representation of terrain  traversability in a  natural  lan- 
guage using  linguistic variables and conditional statements  is easily comprehensible, 
more appealing, and  closer to  human  intuition  than a mathematical  formulation of 
traversability. A set of fuzzy  navigation rules is developed using the  Fuzzy  Traversabil- 
i t y  Index  to guide the robot toward the  safest and the  most traversable terrain. In  
addition,  another  set of fuzzy rules is  developed to drive the robot from  its  initial posi- 
tion  to  a user-specified goal position.  These  two  rule  sets are integrated in a  two-stage 
procedure for  autonomous robot navigation  without  a  priori map-based knowledge about 
the  environment. In  the  first stage,  the  traverse-terrain and seek-goal rule sets  make 
their  individual,  independent  recommendations for robot turn and move  commands. I n  
the second stage,  these  recommendations are integrated b y  using  appropriate  weighting 
factors  to generate  the  combined, coordinated recommendation for  the robot navigation 
based on the robot status. Three simulation  studies are presented to demonstrate  the 
capability of the  mobile robot to reach the goal safely while avoiding  impassable  terrains. 
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1 Introduction 
Although  considerable research has been conducted  on  mobile  robot  navigation  in  recent 
years, the  bulk of this research is focused on indoor robots  operating in  highly-structured, 
known, and human-made environments.  Typically,  the  environment  consists of a flat, smooth, 
horizontal floor on which the  robot moves. The navigation  system for an  indoor mobile robot 
typically  consists of two components: goal-based navigation for target seeking and obstacle- 
based  navigation for collision avoidance.  While  these two components  are  adequate for indoor 
mobile robots,  these  capabilities  are insufficient for outdoor (field) mobile robots  that  operate 
on  unstructured, unknown, and natural terrains. For field mobile robots,  the  terrain plays 
an  important role  in the  navigation logic. In  fact,  the  terrain  characteristics  are  the key 
features  that  distinguish field robot  navigation from  indoor  robot  navigation. Unlike their 
indoor  counterparts, field robots  must  deal  with rugged and rough natural  terrains,  and 
make  real-time  judgments  and decisions based  on the  terrain  quality.  The  navigation  system 
for a field mobile robot  must  therefore  account for the  terrain  information  obtained from 
on-board  sensors, in  addition to  the goal seeking and collision avoidance  components. The 
inclusion of the  terrain  quality  data  into  the  navigation logic adds a third dimension of terrain- 
based navigation that complements  the  existing two  dimensions of goal-based  navigation and 
obstacle-based  navigation. 

The classical methods for field robot  navigation  focus  on a binary  representation of the 
terrain  from  an  obstacle  occupancy  point of view. Specifically, the  terrain  around  the  robot 
is divided up  into a grid  and  binary values (0 or 1) are assigned to  the cells in  the  grid, where 
0 represents a traversable obstacle-free cell and 1 denotes  an  untraversable cell occupied by 
an obstacle.  Recent  experience  in  driving  the  Sojourner rover on  Mars revealed that a binary 
representation  can  result  in  halted  motions,  often leaving the rover in an  undesirable  situation 
[I]. A  more  comprehensive  approach to field robot  navigation is to characterize the presence 
of an  obstacle  in a grid cell using a non-binary  representation.  In  this  setting, a grid cell is not 
as'signed a binary value, but  instead is given a continuous  value that represents the probability 
distribution for occupancy of the grid cell by an  obstacle [2]. Even these  comprehensive 
representations only  account for the obstacle presence and  disregard  the  terrain  properties. 
As such,  they  facilitate obstacle-based  navigation but  do  not  address  terrain-based  navigation. 
There  are in fact only a few existing  methods  available for evaluating  terrain  characteristics 
as it relates to  field robot  navigation.  In  the  current  methods [3-91, traversability is defined 
as a non-binary  mathematical  function of the slope and roughness of the  terrain.  Slope is 
usually  determined by finding the least-squares fit of a plane covering the  area  centered at 
a pixel in  the video  images  obtained  from  on-board  cameras.  Given  this  slope  evaluation, 
roughness is calculated as the  residual of the  best  plane fit - in effect, it  represents  the 
maximum height of the rocks extending  above  (or below) the  fitted  plane.  Traversability 
is thus defined  on a pixel-by-pixel (or  grid-based)  basis,  in which the slope and roughness 
of the  terrain  are  determined  as a mathematical  function of slope  and roughness of each 
individual  grid cell. A traversable  path for the rover to follow is then  constructed based on 
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the  calculated  traversability of each cell. This  traversability  analysis  uses,  in effect, a go/no-go 
pseudo-obstacle  assessment  scheme, rather  than a true  terrain  evaluation  approach.  In  fact, 
if all  extracted  candidate cells contain  one  slender,  tall rock (such as an obelisk) within  an 
otherwise  smooth  area, a traversable  path  cannot  be  constructed using the  existing  methods. 
Furthermore,  analytical  representations of terrain  traversability,  such as those defined in [3-91, 
rely on  accurate  interpretations of the video images obtained from  on-board  cameras,  as well 
as  the  mathematical definition of the  traversability  function.  The video  images  are  usually 
contaminated by noise, calibration  errors,  and  other sources of imprecision and  ambiguity. 
The  mathematical definition of the  traversability  function is also  subjective  and  somewhat 
arbitrary,  leading  to different conclusions based  on the choice of the traversability  function. 
Alternative  methods for analytical  representation of the  terrain  are  described  in [lo-111, but 
suffer from  the  same deficiencies. 

In  this  paper, a new concept  called Fuzzy Truversability Index is introduced for the first 
time for field mobile robots  operating  on  natural  terrains.  This index is expressed by linguistic 
variables  represented by fuzzy sets  that  quantify  the  suitability of the  terrain for traversal 
based  on its geometrical  and  physical  properties,  such as slope,  roughness, and  hardness. 
In  contrast  to  the  existing  methods [3-111, the proposed  Traversability  Index  provides a 
fuzzy characterization of the  terrain  properties  that affect its  traversability.  This  approach is 
intuitive  and easily  comprehensible  because of the use of linguistic variables  such as STEEP, 
ROCKY, and  SOFT  to describe  the  terrain.  The rule set  that defines the Fuzzy Traversability 
Index verbalizes the  human  judgment of the  terrain in a natural  language such as English, 
which is more  appealing  than  the  existing  mathematical  functions [3-111. The fuzzy logic 
framework  also  inherently  deals with  the considerable uncertainty  and  ambiguity  associated 
with  extracting  the  terrain  information from the scene images. Using the Fuzzy Traversability 
Index, a set of fuzzy navigation  rules is developed to guide the  robot  toward  the  safest  and 
the  most  traversable  terrain.  This  rule  set is integrated  with fuzzy rules for goal  seeking 
to  obtain  an  autonomous  navigation  strategy for a field mobile robot  that requires no u 
priori map-based knowledge about  the  environment.  The fuzzy logic rules  presented  in  this 
paper  are  intended  to  capture  the reasoning and decision-making of an  expert  human  driver 
navigating a mobile robot  on a natural  terrain. 

The  paper is structured  as follows. In Section 2, the Fuzzy Traversability  Index is de- 
fined using the fuzzy logic framework.  A set of fuzzy navigation  rules  based  on  this  index 
is presented  in  Section 3. Section 4 discusses fuzzy logic rules for the  robot goal  seeking 
component.  The  integration of the  terrain  traversing  and goal seeking fuzzy rule  sets is de- 
scribed  in  Section 5 .  Illustrative  computer  graphical  simulations  are  presented  in  Section 6 
for proof-of-concept and  demonstration.  The  paper is concluded in  Section 7 with a brief 
review and  future  plans. 
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2 Fuzzy  Traversability Index for Field Mobile Robots 
This  section develops, for the first time,  the Fuzzy Truversability Index as a new and  simple 
measure for quantifying  the ease of traversal of natural  terrains by field mobile robots.  This 
index  provides a succinct  form for representation of the  terrain  quality in the  robot  navigation 
logic, and for encapsulating  the  terrain  quality  data  into a single index. Fuzzy logic is the 
natural framework for definition of the Traversability  Index  because of the imprecision of the 
on-board  sensors that measure  the  terrain  quality,  as well as the  approximation  inherent in 
terrain classification. The multi-valued  “grade” of terrain  traversability offered by the Fuzzy 
Traversability  Index  is  appealing as a more  comprehensive alternative to  the  abrupt  binary 
(0 or 1) representation used for representing the absence  or presence of an  obstacle. Several 
options  are available for defining the Fuzzy Traversability  Index as a function of the  terrain 
geometrical  and  physical  properties.  In  this  paper, the Traversability  Index r is defined by 
fuzzy relations in terms of three  characteristics of the  terrain:  the  slope a, the roughness p ,  
and  the  hardness y, where a, p ,  and y are expressed by fuzzy sets as described below. 

2.1 Terrain Slope a! 

The  terrain  slope a can  be  extracted from the scene images obtained by a stereo vision system 
mounted  on  the  robot [3-91. Typically, a is computed as the  gradient of the  geometric  plane 
that  best fits the  terrain of interest  in  the least-squares  sense. The slope a is  represented by 
the  three fuzzy sets { FLAT,  SLOPED,  STEEP }. The membership  functions of these  sets 
are user-defined trapezoids  as shown in  Figure la, where the abscissa a is the  magnitude of 
the  terrain  slope  and  the  ordinate p(a)  is the degree-of-membership.  Note that  the slope  can 
be  either a positive quantity  representing a dune  or a hill,  or a negative  quantity  representing 
a crater  or a downward  surface.  Observe that precise measurement of the  terrain slope is not 
needed  when  using the fuzzy logic framework. 

2.2 Terrain Roughness p 
As pointed  out  earlier,  the  existing  methods for roughness  evaluation [3-91 compute  ter- 
rain roughness as the residue to  the least-squares  plane fit. These  methods  are sensitive to 
measurement  errors  and  tend to produce  counter-intuitive  results  when  applied to a region 
containing  one  large rock located  within  an  otherwise  smooth  terrain.  In  this  paper, we 
develop a different approach by defining terrain roughness ,8 as a function of rock size 6 and 
rock concentration w on  the given terrain, where size is determined by the average  height 
of the rocks and  concentration is defined by the  relative size of the region occupied by the 
rocks. Thus, a region with a large  number of large rocks will have high  roughness, a region 
containing a small  number of small rocks will have low roughness, and a region containing a 
small  number of large rocks will have a medium  roughness  measure. This  approach  to rough- 
ness evaluation  mimics  the  intuitive  judgment of a human observer.  Since we understand size 
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and  concentration  in  linguistic  terms, we shall  represent the size and  concentration values 
by linguistic  variables  represented by fuzzy sets. The rock size 6 can  be  represented by the 
two fuzzy sets { SMALL, LARGE }, with  the user-defined trapezoidal  membership  functions 
shown in  Figure lb .  Similarly, the rock concentration w is represented by the two fuzzy sets { 
FEW, MANY }, with  the user-defined trapezoidal  membership  functions  depicted in Figure 
IC. The  terrain roughness ,L3 can then  be expressed in terms of S and w using a set of simple 
fuzzy relations.  Let p be  represented by the  three fuzzy sets { SMOOTH,  ROUGH,  ROCKY 
}, where the user-specified trapezoidal  membership  functions  are shown in Figure  Id.  The 
dependence of ,f3 on S and w can then  be expressed by a set of four  simple fuzzy rules  as: 

0 IF  S is SMALL AND w is FEW,  THEN p is SMOOTH. 

0 IF 6 is SMALL AND w is MANY, THEN ,8 is ROUGH. 

0 IF  S is LARGE AND w is FEW,  THEN p is ROUGH. 

0 IF S is LARGE AND w is MANY, THEN p is ROCKY. 

The above  rule set is summarized in Table la. These fuzzy rules capture  the  intuitive def- 
inition of terrain roughness by a human observer. The rules allow the roughness  definition 
to  be  robust  with  respect  to  measurement  errors  encountered in extracting  the size and con- 
centration  information  from  the  terrain scene images. Thus  the precise measurements of the 
rock size 6 and  the rock concentration w are not needed,  because of the multi-valued nature 
of the fuzzy sets used to describe them. 

2.3 Terrain  Hardness y 

While the slope  and roughness  provide an  adequate  representation of the  terrain  from a 
geometrical perspective,  they  do  not convey any  information  about  the physical properties 
of the  terrain  as it relates to  the mobile robot.  This  aspect of the  terrain is particularly 
important  from  the load  bearing  and  traction  points of view, and is captured by the  terrain 
hardness y discussed briefly in this section. 

From a navigation  standpoint, a terrain  can have very desirable  geometrical properties 
(such as a smooth, flat surface),  yet have a highly  undesirable  physical  property  (such as being 
too  soft)  that  can cause trapped wheels and loss of traction for the  robot. A smooth, flat 
surface  composed of soft, fine-grain sand is clearly  undesirable  from  the  robot  traversability 
point of view. Therefore,  the degree to which the  terrain  can  support  the  robot  and  its 
traction  is also an  important  factor.  It is conceivable for the mobile robot  to possess sensing 
devices that measure  the  “hardness” of the local terrain  and assess its  suitability for traversal. 
For instance,  one  concept is a non-contact  on-board  sensor that consists of a pneumatic 
probe which will discharge a puff of air  toward  the  ground surface and a laser  displacement 
sensor that will detect  the  associated  ground  displacement. For “soft” ground,  the  detected 
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surface  displacement will be very large  and for “hard”  ground,  the  displacement value will 
be  minimal.  Another  concept is a small force sensor  carried by a simple  on-board  mechanism 
that makes  physical contact  with  the  nearby surfaces and senses the  resulting  contact forces 
[12] (analogous to  a blind  person  with a walking stick). A third  approach is texture-based 
measurement, where the surface  hardness is inferred  from the  textural  composition of the 
surface.  Similar to  the  human recognition of soft sand versus  compacted soil from its textural 
appearance, we can conceive a sensor unit composed of a video camera  and a neural network- 
based  processing stage, where the network is trained using  several known samples.  This  unit 
can  broadly  categorize the surface  hardness  on  the  basis of its  textural  signatures. Regardless 
of the specific sensor  technology used for surface  hardness  evaluation,  this  class of sensors 
will enable the  robot  to distinguish  hazardous  soft  sandy regions from  safe hard  compacted 
soil. 

Once  the  surface  hardness y is measured by an on-board  sensor, it can  be  represented by 
the  three fuzzy sets { SOFT, MEDIUM,  HARD }, with  the  associated user-defined trapezoidal 
membership  functions shown in  Figure le. Note that precise measurement of the  terrain 
hardness y is not needed because of the multi-valued nature of the fuzzy sets. 

2.4 f i z z y  Traversability Index r 
The Traversability  Index r is defined by a set of fuzzy relations  in  terms of the slope a, 
the roughness p ,  and  the  hardness y of the  terrain.  In  the framework of fuzzy logic, the 
Cartesian product is used to  represent fuzzy functional  relations [13]. Let A = {AI,  Az,  A3}, 
B = { B l ,  B2, B3}, and C = {Cl, C2, C3} represent,  respectively, the fuzzy sets defined on the 
input  variables a, p, and y. The  Cartesian  product of these  input fuzzy sets is the  output 
fuzzy set T = A x B X C with  the  membership  function defined by p ( r )  = p(a) * p ( p )  * p ( y ) ,  
where * denotes  one  form of the fuzzy set  union (“and”)  operation  and T is the fuzzy set 
of the  output variable r. The Traversability  Index r is  represented by the  three fuzzy sets 
T = { LOW,  MEDIUM,  HIGH }, with  the user-defined trapezoidal  membership  functions 
shown by solid  lines  in  Figure If. In  the  context of the  Traversability  Index r ,  the  Cartesian 
product  functional  relation  can  be represented by a set of nine  simple fuzzy rules  as follows: 

0 IF a is STEEP  OR p is ROCKY  OR y is SOFT,  THEN r is LOW. 

0 IF Q is FLAT AND ,f3 is SMOOTH AND y is HARD,  THEN r is HIGH. 

0 IF a is  FLAT AND ,f3 is ROUGH AND y is HARD,  THEN T is  HIGH. 

0 IF a is  SLOPED AND p is SMOOTH AND y is HARD,  THEN r is HIGH. 

0 IF Q is SLOPED  AND ,B is ROUGH  AND y is  HARD,  THEN r is MEDIUM. 

0 IF a is FLAT AND p is SMOOTH AND y is MEDIUM,  THEN r is MEDIUM. 
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0 IF a is  SLOPED AND ,O is SMOOTH  AND y is MEDIUM, THEN r is MEDIUM. 

0 IF a is  FLAT  AND ,O is ROUGH AND y is MEDIUM, THEN r is  MEDIUM. 

0 IF a is  SLOPED AND ,O is ROUGH  AND y is MEDIUM,  THEN r is LOW 

This  rule  set,  in effect, verbalizes the  human  intuitive  judgment of the  terrain  traversability 
in a natural  language  (i.e.,  English).  This fuzzy representation of the  traversability  index 
is more  appealing  than  the  existing  mathematical  formulations of the  traversability  function 
[3-111 because of the use of linguistic  variables  and  conditional  statements that  are close to 
human  reasoning  and comprehension. The 3-dimensional  rule set, shown as a 3-layer cube 
in  Table lb ,  summarizes  the above  rules used for the definition of the  Traversability  Index 
r in  terms of the  slope a,  the roughness ,8, and  the  hardness y of the  terrain. From  rule 1, 
it is seen that  terrains  with high slope, rocky surfaces,  or  soft support  are considered to be 
highly  impassable  and  must  be avoided (see the  front,  side,  and  bottom layers in  the  rule 
cube of Table lb).  When  these  extreme cases are excluded, the  Traversability  Index r falls 
in the  range of possible values spanned by the  three fuzzy sets  LOW,  MEDIUM,  and HIGH, 
depending  on  the  slope, roughness, and  hardness of the  terrain (see the eight  relevant cells 
in Table lb) .  It is observed that, depending  on  the  circumstances,  other  surface  properties 
(in  addition to  slope,  roughness, and  hardness)  can influence the  terrain  traversability  and 
must  be  taken  into  account when defining the Fuzzy Traversability  Index. 

I t  must  be  pointed  out  that  terrain  traversability also depends heavily upon  the me- 
chanical  design of the mobile robot, which determines  its hill-climbing and rock-climbing 
capabilities. As such,  mechanical  features  such as ground  clearance,  traction  mechanism 
(wheeled,  tracked, legged, and so on),  and  other  robot  characteristics  should  also play an 
important role  in determining  the value of the Traversability  Index.  Although  this  index  can 
be defined as a complicated  function of both  the  terrain  properties  and  the  robot  parameters, 
the complications of such a formulation  are  hard to justify.  Therefore, to  simplify the formu- 
lation, we define the Fuzzy Traversability  Index  only as a function of the  terrain  properties. 
However, the definitions of the  trapezoidal  membership  functions (such as  the four  corner 
coordinates of the  trapezoids  that represent a, ,8, y, and r )  are  adjusted  depending  on  the 
particular mobile robot  under  study.  This allows the same rule set shown in  Table l b   t o  
be used for different  mobile robots. As a result, a terrain  that  has a LOW Traversability 
Index for one  robot  can possess a MEDIUM Traversability  Index for another  robot  with a 
different  mechanical  design. For instance,  the  dotted line  membership  functions  in  Figure If 
correspond to a more  capable mobile robot  than  the  robot  with  the solid line  membership 
functions. 

The three-stage process for on-board  assessment of terrain  traversability is shown in the 
block diagram of Figure  2a.  In  the first stage,  the sensing  module  (e.g.,  stereo cameras) 
generates the raw  sensed data  (i.e., video images)  from the  terrain.  In  the second stage,  the 
features of the  terrain (such as slope,  hardness,  and rock size and  concentration)  are  extracted 
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from the raw data. Finally,  in the  third  stage,  these  features  are  inputted  into  the fuzzy logic 
engine which evaluates the  terrain  traversability,  as described below. 

The fuzzy logic process for computation of the  Traversability  Index r consists of the 
following stages shown in the block diagram of Figure  2b.  The  terrain roughness p is  first 
obtained by fuzzy inference  using the  on-board  measurements of the  terrain rock  size and 
concentration S and w.  The numerical values of the  terrain slope a, the  terrain roughness 
p ,  and  the  terrain  hardness y are  then passed through  the “fuzzification” stage  to find the 
degrees-of-membership in  their  corresponding fuzzy sets.  This  data  is  then used to  evaluate 
the  Traversability  Index based  on the fuzzy rules given in  Table lb.  This  stage, which is 
referred to as “inference” in fuzzy logic, produces  the  activation levels or  strengths of the 
rules that  are “fired” using the max-min fuzzy inference method [13]. This  information is 
then passed to  the “defuzzification” stage where the numerical  value of the  Traversability 
Index r is  computed using the  centroid defuzzification method [13]. Note that  the fuzzy logic 
framework used for computation of r only  requires  reasonable estimates of the  terrain  quality 
data a, p ,  and y obtainable from  inexpensive  sensors that  are expected to  be imprecise. This 
method  does not need expensive precision sensors that also  require  extensive  processing of 
sensory data for precise interpretations. 

2.5 Natural Terrain Classification  Based on T 

The Fuzzy Traversability  Index  provides a basis for classifying natural  terrains  according to  
their ease of traversal by the field mobile robot. Using the fuzzy linguistic  description of 
the  Traversability  Index r ,  different regions of the  natural  terrain  within  the  on-board sensor 
horizon can  be classified into  three categories  based  on their value of r. The  three fuzzy sets 
for r can  be  interpreted as follows: 

0 LOW r + IMPASSABLE TERRAIN. 

0 MEDIUM r + PASSABLE TERRAIN. 

0 HIGH r + HIGHLY-PASSABLE TERRAIN. 

This  terrain classification  can  also be used for other  applications,  such as automated selection 
of spacecraft  landing  site  based  on  aerial video imagery. 

3 Terrain-Based  Navigation  using  Fuzzy  Traversability 
Index 

In  this  section,  the Fuzzy Traversability  Index defined in  Section 2 is used to develop  simple 
rules for determination of the  robot  heading  and speed on a natural  terrain.  In  other words, 
the Fuzzy Traversability  Index is used to navigate the  robot  toward  the safest and  the  most 
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traversable  terrain.  This  index provides a simple  means for incorporating  the  terrain  quality 
data  into  the  robot  navigation  strategy.  The fuzzy logic framework has been used  extensively 
for goal-based and obstacle-based  navigation of indoor  mobile robots in the past [see, e.g., 
14-25], but  not for terrain-based  navigation. The control  variables of the mobile robot  are 
the  translational  speed  and  the  heading angle  change A8 per  control cycle. We shall now 
discuss the fuzzy rules for determination of the  robot  heading  angle change and  the  robot 
speed  based on the Fuzzy Traversability  Index.  These  rules  mimic  the  driving  decisions of 
an  expert  driver  navigating  the  robot on a natural  terrain. Note that in an earlier version of 
this  paper [26], the Fuzzy Traversability  Index is defined as a function of terrain  slope  and 
roughness  only, and a different set of navigation  rules is developed. 

3.1 Turn Rules 
It is assumed that  the mobile robot  can only move in the forward  direction  (i.e., reverse 
motion is not allowed). The 180” field of view in  front of the mobile robot  is  partitioned  into 
three 60” sectors,  namely:  front,  right,  and  left, as shown in  Figure 3a. These  sectors  are at 
a distance T from the mobile robot, where T defines the radius of the sensing envelope. As 
shown in  Figure 3a, the  “front” refers to  the direction  the  robot is heading at present,  and 
“right”  and “left”  directions begin at 530” relative to  the  current  robot  heading.  The  terrain 
traversability  data is assumed to  be  available  in the  three forward  directions.  Therefore, 
at any  instant,  three  Traversability Indices are  computed for the  three possible  traversable 
regions  described  above,  namely: r f ,  r,, and q .  The nine turn rules  are as follows: 

0 IF rf is  MEDIUM  AND r1 is HIGH,  THEN A8 is LEFT. 

0 IF rf is MEDIUM  AND r1 is MEDIUM AND r, is HIGH,  THEN A8 is RIGHT 

0 IF rf is MEDIUM  AND r1 is LOW AND r, is HIGH,  THEN A8 is  RIGHT. 

0 IF rf is LOW  AND r1 is HIGH,  THEN A8 is LEFT. 

0 IF rf is LOW  AND r1 is MEDIUM AND r, is HIGH,  THEN A8 is RIGHT. 

o IF rf is LOW  AND r1 is LOW AND rr is HIGH,  THEN Ad is RIGHT. 

0 IF rf is  LOW  AND r1 is MEDIUM AND r, is MEDIUM,  THEN A8 is LEFT. 

0 IF rf is  LOW  AND r1 is MEDIUM AND r, is LOW,  THEN A8 is LEFT. 

0 IF rf is  LOW  AND r1 is LOW  AND r, is MEDIUM, THEN A8 is RIGHT. 

where LEFT  and  RIGHT represent the fuzzy sets of the  heading  angle  change A8, with 
the user-defined triangular  membership  functions shown in  Figure  3b.  Tables  2a  and  2b 
summarize  the above turn rule set when rf is LOW  and MEDIUM.  Note that  LEFT is 
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chosen as the “preferred”  direction of rotation in the above  rule set when left and  right 
regions are equally  traversable. 

Observe that no turn  actions  are needed when: (1) rf is HIGH,  or  (2) rf is MEDIUM 
when q and rr are also  LOW  or MEDIUM (see Table  2b),  or (3) rf is LOW  when rl and rr 
are also  LOW (see Table  2a).  In  these cases, nothing is gained by the  rotational  maneuver 
of the  robot  and  therefore  the  current  heading is maintained. 

3.2 Move Rules 
Once the region to  be traversed by the  robot  is selected based on the relative  values of r ,  
the  robot  speed v can  be  determined based on the value of the  Traversability  Index r* in 
the selected region. This  determination is formulated  as a set of three  simple fuzzy rules for 
speed of traverse as follows: 

0 IF r* is LOW,  THEN v is SLOW. 

0 IF r* is MEDIUM,  THEN v is MODERATE. 

0 IF r* is HIGH,  THEN v is  FAST. 

where SLOW,  MODERATE,  and FAST represent the  three fuzzy sets  associated  with the 
robot  speed v ,  with  the user-defined trapezoidal  membership  functions shown in  Figure 3c. 

4 Goal-Based  Navigation for Target  Seeking 
In  this  section, we present fuzzy rules for navigation of the  robot  from  its  current  position 
to  the desired  goal  position.  Two sets of rules are developed for the  robot  speed v and  the 
robot  heading  angle  change AO. The basic idea  behind  the  navigation rules  is that  the  robot 
tries  to: (1) approach  the goal  with a speed  proportional  to  the  distance between the  current 
position  and  the goal  position, defined as the “position  error” d ,  (2)  rotate  toward  the goal 
position by nullifying the “heading  error” 4, which is the angle by which the  robot needs to  
turn  to face the goal  directly. 

We shall now present the fuzzy navigation  rules for goal seeking in the following subsec- 
t ions. 

4.1 Turn Rules 
The  robot  heading  angle change AO depends  on  the  heading  error 4, where the angles are 
defined to  be positive  in  the clockwise direction.  The  heading  error 4 has  the fuzzy sets { 
GOAL-LEFT,  HEAD-ON,  GOAL-RIGHT }, with  the user-defined triangular  membership 
functions  depicted  in  Figure  4a.  The fuzzy rules for the  robot  turn  are  as follows: 
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0 IF 4 is GOAL-LEFT,  THEN AB is LEFT. 

0 IF 4 is HEAD-ON,  THEN A0 is ON-COURSE. 

0 IF 4 is GOAL-RIGHT,  THEN A0 is RIGHT. 

Note that  the second  rule retains  the  current  heading of the  robot  toward  the goal. I t  is seen 
that  the  robot heading  angle  change AB is only a function of the  heading  error 4, and is 
independent of the  robot  speed v. 

4.2 Move Rules 
The  robot  speed v is generated by the goal distance d.  The goal distance  or  position  error d has 
the fuzzy sets { VERY NEAR,  NEAR, FAR }, with  the user-defined trapezoidal  membership 
functions  depicted  in  Figure 4b. The fuzzy rules for the  robot  speed  are as follows: 

0 IF d is VERY  NEAR,  THEN v is SLOW. 

0 IF  d is NEAR,  THEN w is MODERATE. 

0 IF d is FAR, THEN v is FAST. 

It is seen that  the  robot speed w is only a function of the goal distance d ,  and is independent 
of the  heading  error 4. 

5 Integration of Traverse  and  Seek  Behaviors 
In  the  preceding two sections, fuzzy rule sets  are given for the two independent behaviors 
of terrain  traversing  and goal seeking. The  rule  set for each behavior is concerned solely 
with achieving its  particular  objectives,  disregarding  the  constraints imposed by the  other 
behavior.  In  this  section, we discuss the  integration of these two behaviors to  obtain  an 
autonomous  navigation  strategy for the mobile robot. A  two-stage  procedure is proposed for 
autonomous  robot  navigation  without a priori map-based knowledge about  the  environment. 
In  the first stage,  the  traverse-terrain  and seek-goal rule  sets  make  their  individual,  indepen- 
dent  recommendations for robot  speed  and  heading  angle  commands.  In  the second stage, 
these  recommendations  are  integrated by using appropriate weighting factors to generate  the 
combined,  coordinated  recommendation for the  robot  navigation based on the  robot  status. 

Consider  the  robot  navigation  procedure shown in the block diagram of Figure  5a.  Each of 
the two  behaviors,  traverse-terrain  and seek-goal, generates a set of independent recommen- 
dations for v and AB based  on its own objectives.  These sets of recommendations { u t } ,  {A@} 
and { u s } ,  {ABs} are  then “weighted” by the  crisp weighting  factors t, and s, assigned to  the 
outputs of the traverse-terrain  and seek-goal behaviors, respectively. In  other words, the final 
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recommendations f l  and  result from defuzzification of the weighted aggregated  outputs 
of the  traverse-terrain  and seek-goal rule sets.  The weighting  factors t ,  and s, represent 
the  strengths by which the  traverse-terrain  and seek-goal recommendations  are  taken  into 
account.  These  factors  are  represented by the fuzzy sets { NOMINAL,  HIGH }. The associ- 
ated  triangular  membership  functions  are  depicted in  Figure  5b,  and have the  central values 
of 1 and  10, respectively. Within  this  context,  the  traverse  and seek weighting factors  are 
assumed to  have the fuzzy NOMINAL value except in  the following extreme cases: 

0 IF T* is LOW, THEN t ,  is  HIGH. 

0 IF d is VERY  NEAR,  THEN s, is HIGH. 

The first  rule  implies that when the selected terrain is not easily passable by the  robot,  the 
recommendation of the  traverse-terrain rule set is assigned a HIGH  weighting factor  with  the 
central value 10 relative to  the seek-goal recommendation which has  the NOMINAL  weighting 
factor  with  the  central value 1. The second rule  suggests that when the goal position  is  almost 
reached, the seek-goal recommendation  takes on the  HIGH weighting factor  relative to  the 
NOMINAL  weighting factor for the  traverse-terrain  recommendation.  Excluding  these two 
extreme cases, the  traverse-terrain  and seek-goal recommendations  for 21 and A0 are combined 
using  equal  weightings of unity  to  obtain  the final recommendations for the  robot  speed  and 
heading  angle  change f l  and  that  are passed to  the  robot  motion  control  system for 
execution. 

6 Illustrative  Examples 
In  this  section,  three  graphical  simulation  results  are  presented to  demonstrate fuzzy logic- 
based robot  navigation using the  traverse-terrain  and seek-goal rule  sets  developed  in  this 
paper.  The  simulations  are performed  using the  Robot  Graphical  Simulator (RGS) developed 
at JPL.  This  simulator is written in Java  and is platform-independent,  running  on  both 
PC  and Unix  machines. The RGS provides an essential tool for visualization of the  robot 
reasoning  and decision-making  capabilities  using the fuzzy logic navigation  rule  sets. It 
depicts a terrain composed of regions with different grades of traversability,  together  with 
the  initial  and goal robot  positions.  The  rule  sets for the two behaviors,  namely,  traverse- 
terrain  and seek-goal, are  integrated in the  RGS. A simple  Graphical User Interface  (GUI) 
is provided to issue robot  motion  commands  and  display  the  robot  movements  graphically 
under  the fuzzy navigation  rules. 

Three case studies  are presented  in this  section.  In each case, the  robot is required to move 
from a user-defined initial  position to a designated goal position while avoiding  regions of 
poor  traversability  identified  on the  terrain.  The  robot is equipped  with  on-board  “software 
sensors” that can  detect  terrain  traversability  in  the  three forward regions out  to a specified 
distance.  In  all case studies,  the  terrain  has HIGH  Traversability  Index (T > ~ 4 ) ,  unless 
stated  otherwise. 
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6.1 Case Study One 
In  this case, there  is a region with  LOW  Traversability  Index (a crater  with T < T ~ )  between 
the  initial  and  the goal  positions of the  robot  as  depicted in  Figure  6a. The  robot is required 
to move from the  initial  position  denoted by a hollow rectangle to  the goal  position shown by a 
solid rectangle while avoiding the  impassable region identified by the black circle. This circle 
encloses the impassable region which can have any  irregular  geometrical  shape. A circular 
safety region is also defined which is  displaced  from the original  region by a user-specified 
stand-off distance.  The  path  traversed by the mobile robot  under the fuzzy traverse-terrain 
and seek-goal rule  sets  is shown by the  dotted line  in  Figure  6a. The  dots  along  the  path 
represent the locations of the  robot  center-point at uniformly  spaced time  intervals of 200 
msec.  Therefore, a cluster of dots  denotes slow robot  motion, while a spread of dots  represents 
fast motion. 

In  this  simulation,  the  initial  and goal positions  are aligned and  therefore  the  robot  heads 
straight  toward  the goal initially. As soon as  the  robot  detects  the  crater region  using its 
software  sensors, it deviates  from its original straight  path  to  the left to avoid this region. 
The left turn is chosen as the “preferred”  direction of rotation  as  stated in  Section 3.1. Once 
the  robot  clears  the  impassable region, it heads  straight  to  the goal position  again. It is seen 
that  thehest is successfully completed with  the  robot reaching the goal safely while avoiding 
the impassable  terrain. 

6.2 Case Study Two 
In  this  case,  there  are two impassable regions between the  initial  and  the goal  positions of 
the  robot as depicted  in  Figure  6b.  The  first region has high slope with  the  Traversability 
Index of LOW (T < T ~ ) ,  and  the second region is an  area of high rock concentration also 
with  the  Traversability  Index of LOW (T < T ~ ) .  The  robot is required to drive to the goal 
position while avoiding both  impassable regions identified by black circles with user-defined 
safety regions. Figure  6b  depicts  the  path traversed by the  robot.  In  this case, the  robot 
turns  right  initially,  heading  straight  toward  the goal  position. The  straight  path is perturbed 
when the  robot’s software  sensors detect  the  impassable regions. This causes the  robot  to 
traverse a curved path  to  the goal that clears the  impassable regions. It is seen that  the 
test is successfully completed  with the  robot reaching the goal safely while avoiding both 
impassable  terrains. 

6.3 Case Study Three 
In  this  case,  there  are  three  impassable regions between the  initial  and  the goal  positions of 
the  robot as depicted  in  Figure 6c. The  robot is required to drive to  the goal  position while 
avoiding the  three regions. These regions are a high  slope area  with  LOW  Traversability 
Index  (black  circle  with T < T ~ ) ,  a crater  with  LOW  Traversability  Index (black circle with 
T < T ~ ) ,  and  an  area of high rock density  with  LOW  Traversability  Index  (black circle with 
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r < 71). Each  impassable region is surrounded by a user-defined safety zone shown by a 
circle. The  path traversed by the  robot  under  the fuzzy traverse-terrain  and seek-goal rule 
sets is shown by the  dotted line in  Figure 6c. In  this  simulation,  the  robot  heads  initially 
toward  the goal on a straight  path.  This  path is subsequently modified when the impassable 
regions are  detected,  and  the  resulting curved path is shown in  Figure 6c. It is seen that 
the  test  is successfully completed  with  the  robot reaching the goal safely while avoiding the 
three  impassable  terrains. Observe that  the clustered  dots  along  certain  portions of the  path 
represent  slowing down of the  robot  motion in  those  path  segments. 

7 Conclusions 
The new concept of Fuzzy Traversability  Index is introduced  in  this  paper for field mo- 
bile robots  operating  on  natural  terrains.  The fuzzy logic framework is used to  define the 
Traversability  Index  in  terms of the geometrical and physical properties of the  terrain, such 
as slope,  roughness, and  hardness. A set of fuzzy navigation  rules  based  on  this  concept 
is developed to guide the  robot  toward  the  most  traversable  terrain.  These  rules  are  then 
integrated  with  another  set of fuzzy rules for goal seeking to  obtain  an  autonomous naviga- 
tion  strategy for the mobile robot.  The proposed Fuzzy Traversability  Index  encapsulates 
the  terrain  quality  data  into a single index,  and utilizes this  index in the  robot  navigation 
logic. This process disallows the  robot from  entering  impassable  terrains which compromise 
the  robot safety. 

Fuzzy logic provides a natural framework for formulating  and expressing the character- 
istics of the  terrain  from a traversability  perspective,  and for incorporating  this  information 
in terrain-based  navigation of field mobile robots.  The use of linguistic  variables  represented 
by fuzzy sets  and  conditional IF ( ), THEN ( ) rule statements is simple,  intuitive,  and  akin 
to  the  human reasoning  and decision-making processes. A novel feature of the proposed  ap- 
proach is the  utilization of the regional traversability  information  obtained  from  the  terrain 
data for robot  navigation.  This  information  augments  the local information  obtained  from 
en-route  obstacles to provide a comprehensive  approach for autonomous  robot  navigation 
that requires  no a priori map-based knowledge about  the  environment.  Future research is 
focused on  implementation  and verification of the proposed  approach  on a commercial  mobile 
robot designed for field operations [27-281. 
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